ЖШС «Теплофон»
101400, Қазақстан Республикасы, Карағанды обл., Теміртау қ., Металлург дң., 27
+7 (7213) 958888
info@teplofon.kz

www.teplofon.kz
ТОО «Теплофон»
101401, Республика Казахстан, Карагандинская обл., г. Темиртау, пр. Металлургов, 27
+7 (7213) 958888
info@teplofon.kz

Корзина покупок

0 товаров 0 тенге

Каталог товаров

Введите трек номер посылки для отслеживания процесса доставки.

Последние комментарии

Вы здесь

Излучение электромагнитное


Излучение электромагнитное, процесс образования свободного электромагнитного поля. (Термин "И." применяют также для обозначения самого свободного, т. е. излученного, электромагнитного поля.) Классическая физика рассматривает Излучение как испускание электромагнитных волн ускоренно движущимися электрическими зарядами (в частности, переменными токами). Классическая теория объяснила очень многие характерные черты процессов Излучения, однако она не смогла дать удовлетворительного описания ряда явлений, особенно теплового излучения тел и И. микросистем (атомов и молекул). Такое описание оказалось возможным лишь в рамках квантовой теории Излучения, показавшей, что Излучение представляет собой рождение фотонов при изменении состояния квантовых систем (например, атомов). Квантовая теория, более глубоко проникнув в природу Излучения, одновременно указала и границы применимости классической теории: последняя часто является очень хорошим приближением при описании Излучения, оставаясь, например, теоретической базой радиотехники.

Классическая теория излучения (теория Максвелла). Физические причины существования свободного электромагнитного поля (т. е. поля самоподдерживающегося, независимого от возбудивших его источников) тесно связаны с тем, что электромагнитные волны распространяются от источников — зарядов и токов — не мгновенно, а с конечной скоростью c (в вакууме c @ 3·1010 см/сек). Если источник Излучения (например, переменный ток) в какой-то момент исчезнет, это не приведет к мгновенному исчезновению поля во всем пространстве: в отдалённых от источника точках оно исчезнет лишь через конечный промежуток времени. Из теории Максвелла вытекает, что изменение во времени электрического поля Е порождает магнитное поле Н, а изменение Н — вихревое электрическое поле. Отсюда следует, что самоподдерживающимся может быть лишь переменное электромагнитное поле, в котором обе его компоненты — Е и Н, непрерывно изменяясь, постоянно возбуждают одна другую.

В процессе Излучения электромагнитное поле уносит от источника энергию. Плотность потока энергии этого поля (количество энергии, протекающей за единицу времени через единичную площадку, ориентированную перпендикулярно направлению потока) определяется Пойнтинга вектором П, который пропорционален векторному произведению [ЕН].

Интенсивность И. Eизл есть энергия, уносимая полем от источника в единицу времени. Порядок её величины можно оценить, вычислив произведение площади замкнутой поверхности, охватывающей источник на среднее значение абсолютной величины плотности потока П на этой поверхности (П ~ EH). Обычно поверхность выбирают в форме сферы радиуса R (её площадь ~ R) и вычисляют Eизл в пределе ® ¥.

Для того чтобы эта величина не обращалась в ноль, т. е. чтобы вдали от источника существовало свободное электромагнитное поле, необходимо, чтобы и ЕН убывали не быстрее, чем 1/R. Это требование удовлетворяется, если источниками полей являются ускоренно движущиеся заряды. Вблизи от зарядов поля — кулоновские, пропорциональные 1/R2, но на больших расстояниях основную роль начинают играть некулоновские поля Е и Н, имеющие закон убывания 1/R.

Излучение движущегося заряда. Простейшим источником поля является точечный заряд. У покоящегося заряда Излучение отсутствует. Равномерно движущийся заряд (в пустоте) также не может быть источником Излучения Заряд же, движущийся ускоренно, излучает. В зависимости от физической природы ускорения И. иногда приобретает особые наименования. Так, Излучение, возникающее при торможении заряженных частиц в веществе в результате воздействия на них кулоновских полей ядер и электронов атомов, называется тормозным излучением. Излучение заряженной частицы, движущейся в магнитном поле, искривляющем её траекторию, называется синхротронным излучением (или магнитотормозным Излучением). Оно наблюдается, например, в циклических ускорителях заряженных частиц.

Электрическое дипольное Излучение Простейшей системой, которая может быть источником Излучения, являются два связанных друг с другом колеблющихся, равных по величине, разноимённых заряда. Они образуют диполь с переменным моментом. Излучение, расходящееся от колеблющегося диполя, неизотропно, т. е. энергия, испускаемая им в различных направлениях, неодинакова. Вдоль оси колебаний И. вообще отсутствует. Под прямым же углом к оси колебаний Излучения максимально. Для всех промежуточных направлений угловое распределение Излучения меняется пропорционально sin2 J, где угол J отсчитывается от направления оси колебаний. Если направление оси колебаний диполя меняется со временем, то усреднённое угловое распределение становится более сложным.

Реальные излучатели, как правило, включают множество зарядов. Точный учёт всех деталей движения каждого из них при исследовании Излучения излишен (а зачастую и невозможен). Действительно, Излучение определяется значениями полей вдали от источника, т. е. там, где детали распределения зарядов (и токов) в излучателе сказываются слабо. Это позволяет заменять истинное распределение зарядов приближённым. Самым грубым, "нулевым" приближением является рассмотрение излучающей системы как одного заряда, по величине равного сумме зарядов системы. У электронейтральной системы, сумма зарядов которой равна нулю, Излучение в этом приближении отсутствует. В следующем, первом, приближении положительные и отрицательные заряды системы по отдельности мысленно "стягиваются" к центрам своего распределения. Для электронейтральной системы это означает мысленную замену её электрическим диполем, излучающим согласно. Такое приближение называется дипольным, а соответствующее И. — электрическим дипольным Излучением.

Электрическое квадрупольное и высшие мультипольные Излучения Если у системы зарядов дипольное Излучение отсутствует, например из-за равенства дипольного момента нулю, то необходимо учитывать следующее приближение, в котором система зарядов — источник Излучения — рассматривается как квадруполь, т. е. четырехполюсник. Простейший квадруполь — 2 диполя, имеющие равные по величине и противоположные по направлению моменты. Ещё более детальное описание излучающей системы зарядов даёт рассмотрение последующих приближений, в которых распределение зарядов описывается мультиполями (многополюсниками) высших порядков (диполь называется мультиполем 1-го, квадруполь — 2-го и т. д. порядков).

Важно отметить, что в каждом последующем приближении интенсивность И. примерно в (v/c)2 меньше, чем в предыдущем (если, конечно, последнее не отсутствует по каким-либо причинам). Если излучатель — нерелятивистский, т. е. все заряды имеют скорости, много меньшие, чем световая (v/c << 1), то главную роль играет низшее неисчезающее приближение. Так, если имеется дипольное Излучение, оно является основным, а все остальные высшие мультипольные поправки крайне малы и их можно не учитывать. В случае же Излучения релятивистских частиц описание Излучения с помощью мультиполей становится неэффективным, так как вклад мультиполей высших порядков перестаёт быть малым.

Магнитное дипольное Излучение Кроме электрических диполей и высших мультиполей, источниками Излучения могут быть также магнитные диполи и мультиполи (как правило, основным является дипольное магнитное Излучение). Картина распределения магнитного поля на больших расстояниях от контура, по которому протекает ток, порождающий это поле, подобна картине распределения электрического поля вдали от электрического диполя. Аналог дипольного электрического момента — дипольный магнитный момент М — определяется силой тока I в контуре и его геометрией. Для плоского контура абсолютная величина момента М = (e/cIS, где S — площадь, охватываемая контуром. Отношение магнитного дипольного момента к электрическому имеет порядок v/c, где v — скорость движения зарядов, образующих ток; отсюда вытекает, что интенсивность магнитного дипольного И. в (v/c)2 раз меньше, чем дипольного электрического, если, конечно, последнее присутствует. Таким образом, интенсивности магнитного дипольного и электрического квадрупольного Излучения имеют одинаковый порядок величины.

Излучение релятивистских частиц. Одним из важнейших примеров такого Излучения является синхротронное Излучение заряженных частиц в циклических (кольцевых) ускорителях. Резкое отличие от нерелятивистского Излучения проявляется здесь уже в спектральном составе Излучения: если частота обращения заряженной частицы в ускорителе равна w (нерелятивистский излучатель испускал бы волны такой же частоты), то интенсивность её Излучение имеет максимум при частоте wмакс ~ g3w, где g = [1 — (v/c)2]-1/2, т. е. основная доля И. при v ® с приходится на частоты, более высокие, чем w. Такое И. направлено почти по касательной к орбите частицы, в основном вперёд по направлению её движения.

Ультрарелятивистская частица может излучать электромагнитные волны, даже если она движется прямолинейно и равномерно (но только в веществе, а не в пустоте!). Это Излучение, названное Черенкова — Вавилова излучением, возникает, если скорость заряженной частицы в среде превосходит фазовую скорость света в этой среде (uфаз = c/n, где n — показатель преломления среды). Излучением появляется из-за того, что частица "перегоняет" порождаемое ею поле, отрывается от него.

Квантовая теория излучения. Выше уже говорилось, что классическая теория даёт лишь приближённое описание процессов Излучения (весь физический мир в принципе является "квантовым"). Однако существуют и такие физические системы, Излучение которых невозможно даже приближённо описать в согласии с опытом, оставаясь на позициях классической теории. Важная особенность таких квантовых систем, как атом или молекула, заключается в том, что их внутренняя энергия не меняется непрерывно, а может принимать лишь определённые значения, образующие дискретный набор. Переход системы из состояния с одной энергией в состояние с другой энергией происходит скачкообразно; в силу закона сохранения энергии система при таком переходе должна терять или приобретать определённую "порцию" энергии. Чаще всего этот процесс реализуется в виде испускания (или поглощения) системой кванта Излучения — фотона. Энергия кванта eg = ћw, где ћ — Планка постоянная (ћ = 1,05450×10-27 эрг×сек), w — круговая частота. Фотон всегда выступает как единое целое, испускается и поглощается "целиком", в одном акте, имеет определённую энергию, импульс и спин (проекцию момента количества движения на направление импульса), т. е. обладает рядом корпускулярных свойств. В то же время фотон резко отличается от обычных классических частиц тем, что у него есть и волновые черты. Такая двойственность фотона представляет собой частное проявление корпускулярно-волнового дуализма.

Последовательной квантовой теорией Излучения является квантовая электродинамика. Однако многие результаты, относящиеся к процессам Излучения квантовых систем, можно получить из более простой полуклассической теории Излучения Формулы последней, согласно соответствия принципу, при определённом предельном переходе должны давать результаты классической теории. Таким образом, устанавливается глубокая аналогия между величинами, характеризующими процессы Излучения в квантовой и классической теориях.

Излучение атома. Система из ядра и движущегося в его кулоновском поле электрона должна находиться в одном из дискретных состояний (на определённом уровне энергии). При этом все состояния, кроме основного (т. е. имеющего наименьшую энергию), неустойчивы. Атом, находящийся в неустойчивом (возбуждённом) состоянии, даже если он изолирован, переходит в состояние с меньшей энергией. Этот квантовый переход сопровождается испусканием фотона; такое Излучение называется спонтанным (самопроизвольным). Важно отметить, что такие характеристики спонтанного И., как направление распространения (для совокупности атомов — угловое распределение их спонтанного И.) и поляризация, не зависят от И. других объектов (внешнего электромагнитного поля).

Формула Бора определяет дискретный набор частот (и следовательно, длин волн) И. атома. Она объясняет, почему спектры И. атомов имеют хорошо известный "линейчатый" характер — каждая линия спектра соответствует одному из квантовых переходов атомов данного вещества.

Интенсивность Излучения В квантовой теории, как и в классической, можно рассматривать электрические дипольное и высшие мультипольные Излучения . Квантовые переходы, удовлетворяющие таким правилам отбора, называются разрешенными (фактически имеется в виду разрешенное электрическое дипольное Излучение.). Переходы же высших мультипольностей называются запрещенными. Этот запрет относителен: запрещенные переходы имеют относительно малую вероятность, т. е. отвечающая им интенсивность Излучения невелика. Те состояния, переходы из которых "запрещены", являются сравнительно устойчивыми (долгоживущими). Они называются метастабильными состояниями.

Квантовая теория Излучения позволяет объяснить не только различие в интенсивностях разных линий, но и распределение интенсивности в пределах каждой линии; в частности, ширину спектральных линий.

Источниками электромагнитного Излучения могут быть не только атомы, но и более сложные квантовые системы. Общие методы описания Излучения таких систем те же, что и при рассмотрении атомов, но конкретные особенности И. весьма разнообразны. Излучение молекул, например, имеет более сложные спектры, чем И. атомов. Для И. атомных ядер типично, что энергия отдельных квантов обычно велика (g-кванты), интенсивность же Излучения сравнительно низка.

Электромагнитное Излучение часто возникает и при взаимных превращениях элементарных частиц (аннигиляции электронов и позитронов, распаде нейтрального пи-мезона и т.д.).

Вынужденное И. Если частота внешнего Излучению, падающего на уже возбуждённый атом, совпадает с одной из частот возможных для этого атома согласно (6) квантовых переходов, то атом испускает квант И., в точности такой же, как и налетевший на него (резонансный) фотон. Это Излучение называется вынужденным. По своим свойствам оно резко отличается от спонтанного — не только частота, но и направление распространения, и поляризация испущенного фотона оказываются теми же, что у резонансного. Вероятность вынужденного Излучения (в отличие от спонтанного!) пропорциональна интенсивности внешнего Излучения, т. е. количеству резонансных фотонов. Существование вынужденного Излучения было постулировано А. Эйнштейном при теоретическом анализе процессов теплового Излучения тел с позиций квантовой теории и затем было подтверждено экспериментально. В обычных условиях интенсивность вынужденного И. мала по сравнению с интенсивностью спонтанного. Однако она сильно возрастает в веществе, в котором в метастабильном состоянии находится больше атомов, чем в одном из состояний с меньшей энергией (в которое возможен квантовый переход). При попадании в такое вещество резонансного фотона испускаются фотоны, в свою очередь играющие роль резонансных. Число излучаемых фотонов лавинообразно возрастает; результирующее Излучения состоит из фотонов, совершенно идентичных по своим свойствам, и образует когерентный поток. На этом явлении основано действие квантовых генераторов и квантовых усилителей Излучения

Роль теории излучения. Практическое и научно-прикладное значение теории Излучения огромно. На ней основывается разработка и применение лазеров и мазеров, создание новых источников света, ряд важных достижений в области радиотехники и спектроскопии. Понимание и изучение законов Излучения важно и в другом отношении: по характеру Излучения (энергетическому спектру, угловому распределению, поляризации) можно судить о свойствах излучателя. Излучение — пока фактически единственный и весьма многосторонний источник информации о космических объектах. Например, анализ Излучения, приходящего из космоса, привёл к открытию таких необычных небесных тел, как пульсары. Изучение спектров далёких внегалактических объектов подтвердило теорию расширяющейся Вселенной. Одновременно изучение Излучения позволяет проникнуть в область явлений микромира. Именно теории И. принадлежит особая роль в формировании всей современной физической картины мира: преодоление трудностей, возникших в электродинамике движущихся сред, привело к созданию относительности теории; исследования М. Планка, посвященные тепловому излучению, положили начало квантовой теории и квантовой механике. Дальнейшее развитие теории И. должно привести к ещё более глубокому познанию материи.

Лит.: Тамм И. Е., Основы теории электричества, 7 изд., М., 1957; Иваненко Д., Соколов А., Классическая теория поля, М. — Л., 1949; их же, Квантовая теория поля, М. — Л., 1952; Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 2 изд., М., 1959; Ландау Л. Д., Лифшиц Е. М., Теория поля, 5 изд., М., 1967 (Теоретическая физика, т. 2).

Добавить комментарий